this post was submitted on 16 Jun 2025
6 points (55.2% liked)
Asklemmy
48812 readers
479 users here now
A loosely moderated place to ask open-ended questions
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- !lemmy411@lemmy.ca: a community for finding communities
~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~
founded 6 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
~~I tried again, I don't find mistakes in your statements, I just don't see how they make up for "instant in-mind proofs" for the problem~~ I think I see it now, nevermind. Your got a very good visualization for 3D CanadPlus. It seems so intuitive that "the set of points that map to H with orthogonal projection is a straight line", but do you happen to have a pocket proof for that ?
Uhh, that the preimage of a point like H is a line? Off the top of my head, I'd use the fact it's a shifted copy of the kernel. Well, assuming without loss of generality that we're in a vector space and not just an affine space.
Using basic rules and notions from linear algebra and the theory of functions:
For a projection O in space V, your preimage L is defined as {l∈V | O(l) = H}. Using the linearity of O you can turn that into {l∈V | O(l-H) = 0}, which is equivalent to {y∈V | O(y) = 0} by setting l=y+H. Definitionally, an affine subspace is constructed from the members of a subspace added to a constant like that. The kernel, {y∈V | O(y) = 0}, is a subspace because any linear combination of vectors within it will, once you apply and distribute the operator using linearity again, turn into a sum of 0s, meaning the result must always be another member of the kernel.All that's left is to prove it's a 1D affine subspace, AKA an infinite line. Every point w in the domain V is in some preimage, by the definition of a function, and so using the same math you can construct it as O(w)+k for some k in the kernel. O(r)=r for all r in the range by the definition of a projection, which you can use to both show it's a subspace and can't contain any basis of the kernel (expanding that out I'll leave as an exercise). So, the dimension of the range and the kernel have to add to that of the whole domain. This actually holds for all other linear operators as well.
Our space is 3D and the provided plane is 2D. 3-2=1, QED.
Probably there's a proof from the axioms of Euclidean geometry that doesn't need linear algebra, but I was never good at that sort of thing. It's also worth noting that any set defined purely by linear operators and affine linear subspaces will again be (describable as) affine linear. It's like a closure property.