this post was submitted on 05 Dec 2023
1 points (100.0% liked)

Advent Of Code

1012 readers
1 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 2 years ago
MODERATORS
 

Day 5: If You Give a Seed a Fertilizer


Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • Code block support is not fully rolled out yet but likely will be in the middle of the event. Try to share solutions as both code blocks and using something such as https://topaz.github.io/paste/ , pastebin, or github (code blocks to future proof it for when 0.19 comes out and since code blocks currently function in some apps and some instances as well if they are running a 0.19 beta)

FAQ


πŸ”’This post will be unlocked when there is a decent amount of submissions on the leaderboard to avoid cheating for top spots

πŸ”“ Unlocked after 27 mins (current record for time, hard one today)

top 9 comments
sorted by: hot top controversial new old
[–] iAvicenna@lemmy.world 2 points 1 year ago* (last edited 1 year ago) (1 children)
[–] iAvicenna@lemmy.world 1 points 1 year ago

Started 4 days late so coming up from behind. Day 5 was the first solution I am somewhat proud of. I used interval arithmetics. I had to somewhat extend a class interval from pyinterval into something I called PointedInterval. In the end part 2 was completed in 0.32 seconds. It does not reverse engineer the solution starting from 0 location and inverse mapping until you find a seed (that was how I was initially planning to do it). It maps forward everything as intervals. There is a bit of a boiler plate which is in the utils file.

[–] Massahud@programming.dev 2 points 1 year ago

Language: Python

Github

Catching up missed days.

[–] kartoffelsaft@programming.dev 1 points 1 year ago* (last edited 1 year ago)

Odin

When I read the problem description I expected the input to also be 2 digit numbers. When I looked at it I just had to say "huh."

Second part I think you definitely have to do in reverse (edit: if you are doing a linear search for the answer), as that allows you to nope out as soon as you find a match, whereas with doing it forward you have to keep checking just in case.

Formatted code

package day5

import "core:fmt"
import "core:strings"
import "core:slice"
import "core:strconv"

Range :: struct {
    dest: int,
    src: int,
    range: int,
}

Mapper :: struct {
    ranges: []Range,
}

parse_range :: proc(s: string) -> (ret: Range) {
    rest := s

    parseLen := -1

    destOk: bool
    ret.dest, destOk = strconv.parse_int(rest, 10, &parseLen)
    rest = strings.trim_left_space(rest[parseLen:])

    srcOk: bool
    ret.src, srcOk = strconv.parse_int(rest, 10, &parseLen)
    rest = strings.trim_left_space(rest[parseLen:])

    rangeOk: bool
    ret.range, rangeOk = strconv.parse_int(rest, 10, &parseLen)

    return
}

parse_mapper :: proc(ss: []string) -> (ret: Mapper) {
    ret.ranges = make([]Range, len(ss)-1)
    for s, i in ss[1:] {
        ret.ranges[i] = parse_range(s)
    }

    return
}

parse_mappers :: proc(ss: []string) -> []Mapper {
    mapsStr := make([dynamic][]string)
    defer delete(mapsStr)

    restOfLines := ss
    isLineEmpty :: proc(s: string)->bool {return len(s)==0}

    for i, found := slice.linear_search_proc(restOfLines, isLineEmpty); 
        found; 
        i, found  = slice.linear_search_proc(restOfLines, isLineEmpty) {
        
        append(&mapsStr, restOfLines[:i])
        restOfLines = restOfLines[i+1:]
    }
    append(&mapsStr, restOfLines[:])

    return slice.mapper(mapsStr[1:], parse_mapper)
}

apply_mapper :: proc(mapper: Mapper, num: int) -> int {
    for r in mapper.ranges {
        if num >= r.src && num - r.src < r.range do return num - r.src + r.dest
    }

    return num
}

p1 :: proc(input: []string) {
    maps := parse_mappers(input)
    defer {
        for m in maps do delete(m.ranges)
        delete(maps)
    }

    restSeeds := input[0][len("seeds: "):]
    min := 0x7fffffff

    for len(restSeeds) > 0 {
        seedLen := -1
        seed, seedOk := strconv.parse_int(restSeeds, 10, &seedLen)
        restSeeds = strings.trim_left_space(restSeeds[seedLen:])

        fmt.print(seed)
        for m in maps {
            seed = apply_mapper(m, seed)
            fmt.print(" ->", seed)
        }
        fmt.println()

        if seed < min do min = seed
    }

    fmt.println(min)
}

apply_mapper_reverse :: proc(mapper: Mapper, num: int) -> int {
    for r in mapper.ranges {
        if num >= r.dest && num - r.dest < r.range do return num - r.dest + r.src
    }

    return num
}

p2 :: proc(input: []string) {
    SeedRange :: struct {
        start: int,
        len: int,
    }

    seeds := make([dynamic]SeedRange)
    restSeeds := input[0][len("seeds: "):]

    for len(restSeeds) > 0 {
        seedLen := -1
        seedS, seedSOk := strconv.parse_int(restSeeds, 10, &seedLen)
        restSeeds = strings.trim_left_space(restSeeds[seedLen:])

        seedL, seedLOk := strconv.parse_int(restSeeds, 10, &seedLen)
        restSeeds = strings.trim_left_space(restSeeds[seedLen:])

        append(&seeds, SeedRange{seedS, seedL})
    }

    maps := parse_mappers(input)
    defer {
        for m in maps do delete(m.ranges)
        delete(maps)
    }

    for i := 0; true; i += 1 {
        rseed := i
        #reverse for m in maps {
            rseed = apply_mapper_reverse(m, rseed)
        }

        found := false
        for sr in seeds {
            if rseed >= sr.start && rseed < sr.start + sr.len {
                found = true
                break
            }
        }
        if found {
            fmt.println(i)
            break
        }
    }
}
[–] cacheson@kbin.social 0 points 1 year ago (1 children)

Nim

Woof. Part 1 was simple enough. I thought I could adapt my solution to part 2 pretty easily, just add all the values in the ranges to the starting set. Worked fine for the example, but the ranges for the actual input are too large. Ended up taking 16gb of RAM and crunching forever.

I finally abandoned my quick and dirty approach when rewriting part 2, and made some proper types and functions. Treated each range as an object, and used set operations on them. The difference operation tends to fragment the range that it's used on, so I meant to write some code to defragment the ranges after each round of mappings. Forgot to do so, but the code ran quick enough this time anyway.

[–] janAkali@lemmy.one 0 points 1 year ago (1 children)

Treated each range as an object, and used set operations on them

That's smart. Honestly, I don't understand how it works. πŸ˜…

The difference operation tends to fragment the range that it’s used on, so I meant to write some code to defragment the ranges after each round of mappings. Forgot to do so, but the code ran quick enough this time anyway.

I've got different solution from yours, but this part is the same, lol. My code slices the ranges into 1-3 parts on each step, so I also planned to 'defragment' them. But performance is plenty without this step, ~450 microseconds for both parts on my PC.

[–] cacheson@kbin.social 0 points 1 year ago (1 children)

Treated each range as an object, and used set operations on them

That’s smart. Honestly, I don’t understand how it works. πŸ˜…

"Set operations" should probably be in quotes. I just mean that I implemented the * (intersection) and - (difference) operators for my ValueRange type. The intersection operator works like it does for sets, just returning the overlap. The difference operator has to work a little differently, because ranges have to be contiguous, whereas sets don't, so it returns a sequence of ValueRange objects.

My ValueMapping type uses a ValueRange for it's source, so applying it to a range just involves using the intersection operator to determine what part of the range needs to move, and the difference operator to determine which parts are left.

[–] janAkali@lemmy.one 0 points 1 year ago* (last edited 1 year ago) (1 children)

Well, then we have the same solution but coded very differently. Here's mine.

ruleApplied is one function with almost all logic. I take a range and compare it to a rule's source range (50 98 2 is a rule). Overlaps get transformed and collected into the first sequence and everything that left goes in the second. I need two seqs there, for transformed values to skip next rules in the same map.

Repeat for each rule and each map (seq[Rule]). And presto, it's working!

[–] cacheson@kbin.social 1 points 1 year ago

Yeah, roughly the same idea. I guess I could have just used HSlice for my range type, I thought maybe there was some special magic to it.

It looks like your if-else ladder misses a corner case, where one range only intersects with the first or last element of the other. Switching to <= and >= for those should take care of it though.